Mode of phytochrome B action in the photoregulation of seed germination in Arabidopsis thaliana.

نویسندگان

  • T Shinomura
  • H Hanzawa
  • E Schäfer
  • M Furuya
چکیده

Arabidopsis thaliana seeds imbibed for a short duration show phytochrome B (PhyB)-specific photo-induction of germination. Using this system, the relationship was determined between the amount of PhyB in seeds and photon energy required for PhyB-specific germination in two transgenic Arabidopsis lines transformed with either the Arabidopsis PhyB cDNA (ABO) or the rice PhyB cDNA (RBO). Immunochemical detection of PhyB apoprotein (PHYB) showed that the expression level of PHYB in ABO seeds was at least two times higher than that in the wild-type seeds, but in RBO seeds the PHYB level was indistinguishable from that in wild-type seeds. The photon fluence required for induction and photoreversible inhibition of germination was examined using the Okazaki large spectrograph. At the wavelengths of 400-710 nm, the ABO seeds required significantly less photon fluence than wild-type seeds for induction of germination, whereas the RBO seeds required similar fluence to wild-type seeds. A critical threshold wavelength for either induction or inhibition of germination of ABO seeds shifted towards the longer wavelengths relative to wild-type seeds. By assuming that PhyA and PhyB are similar in their photochemical parameters, amounts of Pfr at each wavelength were calculated. The photon fluence required for 50% germination was equivalent to the fluence generating a Pfr/Ptot ratio of 0.21-0.43 in wild-type seeds, and of 0.035-0.056 in ABO seeds. These results indicate that PhyB-specific seed germination is not strictly a function of the Pfr/Ptot ratio, but is probably a function of the absolute Pfr concentration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Induction of Seed Germination in Arabidopsis thaliana Is Regulated Principally by Phytochrome B and Secondarily by Phytochrome A.

We examined whether spectrally active phytochrome A (PhyA) and phytochrome B (PhyB) play specific roles in the induction of seed germination in Arabidopsis thaliana (L.) Heynh., using PhyA- and PhyB-null mutants, fre1-1 (A. Nagatani, J.W. Reed, J. Chory [1993] Plant Physiol 102: 269-277) and hy3-Bo64 (J. Reed, P.Nagpal, D.S. Poole, M. Furuya, J. Chory [1993] Plant Cell 5: 147-157). When dormant...

متن کامل

Seed germination of Arabidopsis thaliana phyA/phyB double mutants is under phytochrome control.

We examined the photocontrol of seed germination in the phyA/phyB double mutants of Arabidopsis thaliana seeds. Dormant phyA/phyB seeds showed a red/far-red light (R/FR)-reversible induction of seed germination. This suggests the involvement of at least one other phytochrome, phyC, D, and/or E, in controlling seed germination. We designated this spectrally active phytochrome in phyA/phyB as phy...

متن کامل

Phytochrome B and REVEILLE1/2-mediated signalling controls seed dormancy and germination in Arabidopsis

Seeds maintain a dormant state to withstand adverse conditions and germinate when conditions become favourable to give rise to a new generation of flowering plants. Seed dormancy and germination are tightly controlled by internal and external signals. Although phytochrome photoreceptors are proposed to regulate primary seed dormancy, the underlying molecular mechanism remains elusive. Here we s...

متن کامل

PIL5, a phytochrome-interacting basic helix-loop-helix protein, is a key negative regulator of seed germination in Arabidopsis thaliana.

The first decision made by an angiosperm seed, whether to germinate or not, is based on integration of various environmental signals such as water and light. The phytochromes (Phys) act as red and far-red light (Pfr) photoreceptors to mediate light signaling through yet uncharacterized pathways. We report here that the PIF3-like 5 (PIL5) protein, a basic helix-loop-helix transcription factor, i...

متن کامل

The Arabidopsis ZINC FINGER PROTEIN3 Interferes with Abscisic Acid and Light Signaling in Seed Germination and Plant Development.

Seed germination is controlled by environmental signals, including light and endogenous phytohormones. Abscisic acid (ABA) inhibits, whereas gibberellin promotes, germination and early seedling development, respectively. Here, we report that ZFP3, a nuclear C2H2 zinc finger protein, acts as a negative regulator of ABA suppression of seed germination in Arabidopsis (Arabidopsis thaliana). Accord...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant journal : for cell and molecular biology

دوره 13 5  شماره 

صفحات  -

تاریخ انتشار 1998